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The Schroedinger equation is solved in time and space
to implement a finite-temperature equation-of-state
theory for dense, partially ionized matter. The time-
dependent calculation generates a spectrum of quantum
states. Eigenfunctions are calculated from a knowledge of
the spectrum and used to calculate the electronic pressure
and energy. Results are given for LiD and compared with

results from the INFERNO model.



. Introduction

There has been much interest recently in improving the accuracy
of equations-of-state databases for dense, partially ionized
materials [1]. In particular quantum self-consistent-field (QSCF)
models [1-3] are replacing the older Thomas-Fermi-Dirac (TFD)
model [4-5], and in the future condensed-matter models (known as
warm dense matter models [6]) may replace the QSCF models.

The QSCF models [1-3] suffer from difficulties in converging the
self-consistent fields and in uncertainty in boundary conditions at
the ion-sphere radius. The latter problem is especially troubling
because it leads to author-dependent results based on how a given
author may decide to satisfy the theorem of wave function
continuity at boundaries and at the same time mimic condensed
matter effects which more powerful theories [6] treat explicitly.

In contrast an advantage of the TFD model [4-5] and of a recénly
presented quantum-shell corrected TFD model [7] is its use of
unambiguous boundary conditions.

In this paper we present a quantum theory which improves on the
problems of convergence and boundary-condition uncertainty. Our
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theory also takes advantage of recent advances in computational
algorithm development [8-10] for solving the Schroedinger equation
as a parabolic partial differential equation in the time and three
spatial dimensions. This enables the treatment of non-monatomic
materials at a fundamental level. At present in the QSCF and TFD
models only monatomic materials' equations-of-state are calculated
and a mixing scheme [11] based on adjustment of component
densities to achieve the same mean pressure is employed to treat
non-monatomic materials. This scheme is unable, except perhaps in
an empirical sense, to describe the chemical binding which exists in

the cold and warm materials.

Il. Theory and results

We solve the time-dependent Schroedinger equation (expressed
in atomic units) for orbitals of a given symmetry. For example
for an atom we solve for orbitals of s, py, Py: Pz symmetries, where
the excited states of each symmetry are generated in the temporal
solution. [12]. Problems which take advantage of spherical

symmetry, where available, by projection of radial Schroedinger



equations, which is possible when the angular solutions are the
set of spherical harmonics [1-3], require less numerical work in that
one would solve one radial equation for all magnetic sub-orbitals

(Py, Py: Pz for example); however we have gained the generality of
being able to treat a potential of low symmetry within an ion sphere.

For the jth orbital for example we have the Schroedinger

equation,

2160 =2V VoI, Go

ot = (1)
The potential is given by the ansatz,

1
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where the occupation number nj is either 1 or 2, ej(t) is the
quantum mean of the Hamiltonian in Eq. (1), and the summations over
k and j run over the positions of the point nuclei and over the
electronic orbitals respectively. Eq. (1) is solved starting at

= 0 with a linear combitation of Slater-type orbitals centered at
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the nuclear positions.

We use of an algorithm (Fast-Fourier-Transform) in which the
Laplacian is evaluated in transform rather than in real space. This
allows us to find the solution at the boundaries of the grid box in
apparent absence of physically spurious numerical reflections or
other artifacts there. Futhermore the natural periodicity of the FFT
algorithm implies that the grid box, in which the ion sphere is
contained, is concatenated virtually in all three spatial dimensions.
We believe that this virtual lattice is a sensible representation of
the periodicity of the electronic density which is implicit in the
ion-sphere model.

Numerical experiments have shown us that a stationary solution

is obtained at t=102a.u. = Fig.1 shows the spectrom [12] at

t = 10 a. u. for a temperature of 0.026 eV and density of 0.08 g/cc.
As described in [12], knowing the eigenenergies from the spectral
peak positions the eigenfunctions are calculated from another
integration in which the eigenfunctions are the temporal Fourier
transforms at the appropriate eigenenergies. The widths of the
spectral peaks depend on the length of the temporal interval
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(10 a.u.); it is satisfactory to choose a tyj,5x Which resolves all
peaks and for which stationarity of the mean Hamiltonian is
achieved.

Fig. 2 shows the first two even-parity eigenfunctions for LiD
corresponding to the first two eigenenergies of Fig. 1. The Li
nucleus is centered at z = -1.5 a. u. and the D nucleus at
z = 1.5 a. u. The eigenfunction with eigenenergy centered near
-3.5 a. u. (Fig. 1) is nearly completely centered about the Li nucleus;
the eigenfunction with eigenenergy centered near -1.0 a. u. (Fig. 1) is
shared covalently between the two nuclei and thus its squared
modulus or electronic density represents a sigma-type chemical
bond in which the electronic density forms a cylinder along the bond.

In this calculation the time step is dt = 0.05 a. u. and a spatial
grid in cartesian coordinates of dimension 32x32x32 is used. The
volume of the ion sphere is calculated from the reciprocal of the
material number density. We choose the length of an edge of our
square computational grid box to be equal to twice the radius of the

ion sphere. For mixed materials such as LiD the volume of the ion



sphere is calculated from the reciprocal of the number density of
the diatomic material (where the isotopic number for Li is 6), and
the ion sphere radius is measured from the molecular midpoint. The
internuclear axis is taken along the z axis. In the highly shocked
material the length of the z-edge of the computational grid box is
constrained to be larger than twice a bond length; otherwise the
nuclei would eventially approach the box boundaries, invalidating the
calculation. This constraint has a physical basis however, namely
‘that a molecule is not very compressible along its bond. In these
cases the grid box is taken to be a rectangle, instead of a square,
with length of the x-edge and y-edge taken to be twice the radius of
the base of the cylinder, with height along z equal to twice the bond
length, whose volume is calculated from the reciprocal of the
number density compressed diatomic material.

The parameters of the starting orbitals are sensibly chosen to
minimize the energy. The spectrum and stationary energy tend to be
insensitive to a range of variations about these values. Outside of

this range however values exist which dramatically change the



spectrum; the new spectrum appears to correspond to an excited
configuration. We use only the ground configuration. Electrons are
thermally promoted from ground configuration orbitals into
continuum orbitals.

Continuum states are calculated using the same numerical
procedures as described above, except that the starting orbitals are
taken to be pléne waves with a known momentum and energy [10].
Solution of the time-dependent Schroedinger equation then evolves
these orbitals into steady free-electron orbitals in the presence of a
given potential. The use of plane-wave starting orbitals and a
forward time integration insures that the evolved, steady orbitals
satisfy outgoing boundary conditions [10]. A number of orbitals
sufficient to span the continuum for a given temperature are used.
The results are sensitive for a given temperature to having
continuum orbitals available for occupation by thermally promoted
electrons; we have therefore distrubuted the continuum energies
from a value close to zero to eight times kT. If the range of
energies are too narrowly distributed about kT, then we observe
Fermi collapse, in which the material is not energetic enough for a
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given temperature. This is a problem, characteristic of the quantum
models [7], which TFD theory avoids by having the electronic density
written analytically as an integral over electronic energies from
zero to infinity. It is more important to span a wide swath of
energy space for a given kT than it is, for a smooth continuum in
absence of resonances, to take a fine grid in the integration over
continuum energies. Here we find that use of nine continuum
orbitals gives satisfactory results.

anwing the bound eigenfunctions from the spectral calculation
and the continuum orbitals from the procedure described previously,
the electronic density is normalized to ensure electrical neutrality
within the grid domain, which contains the ion sphere, by requiring

that the volume integral of the density is equal to the number of

electrons,
drp() =2
j p(r) (3a)
p® = p@, + p, (3b)
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where p is the chemical potential, which is adjusted such that
Eq. (3a) is satisfied.

The pressure is calculated from the virial theorem, using the
difference of the mean kinetic energy and the virial of Clausius
rather than the surface integral [13]. The energy is calculated from
the mean of the many-electron Hamiltonian. In both cases the
variationally-derived Kohn-Sham exchange contributions are
included [13-14].

We show comparisons of the shock Hugoniot for LiD for the
present and the INFERNO models, where the materials mixing scheme
described by More et al. [11] has been used in the INFERNO
célculation. The Hugoniots are calculated by solving the Rankine-
Hugoniot equation by interpolation on tables of pressure and energy
isotherms. The initial density of 0.823 g/cc is close to normal and
was chosen to give an interpolated Hugoniot with the least amount
of numerical noise. Some amount of numerical noise in the
isotherms seems hard to avoid in quantum calculations due to
the difficulty of converging the calculation to self-consistency at
every temperature-density point. The agreement is reasonably good
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considering the differences between the two models. The present
model gives a slightly more compressible Hugoniot, which would
seem to be consistent with the increase in phase space available to
electrons moving in the field of two nuclei per unit of material in
comparison to that available to electrons moving in the field of one
nucleus per unit of material [11].

In conclusion we have developed a finite-temperature spectral
theory of materials' equation-of-state. The method generates a
spectrum of electronic states in a single temporal integration pass.
Knowing the spectrum the eigenfunctions can be recovered in a
second integration pass and used to calculate the electronic
pressure and energy of the material.

The use of a 3D Schroedinger-equation solver allows us to treat
chemically mixed materials at a fundamental level. The use of the
FFT solver automatically posits periodic boundary conditions for the
computational grid box; this is consistent with the naturally
- occuring periodicity of condensed materials and eliminates the ion-
sphere boundary uncertainty of QSCF models [1-3].

Finally the authors of [3] conclude that their QSCF results
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suggest "that our understanding of dense, partially ionized matter is
good," to which | reply, with Hardy [15],

That | could think there trembled through
Their happy good-night air
Some blessed hope, whereof they knew
And | was unaware.
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Figure Captions
Fig. 1. Spectrum of LiD at T = 0.26 eV and p = 0.08 g/cc.
Fig. 2. Eigenfunctions versus z corresponding to the two spectral

peaks given in Fig. 1. The Li nucleus is centered at z = -1.5 a. u. and
the D nucleus is centered at z = 1.5 a. u.

Fig. 3. Shock Hugoniots for LiD. The initial temperature is 0 .026 eV
and the initial density is 0.823 g/cc. Heavy curve: INFERNO model
with mixing scheme of Ref. 11; light curve: present model.
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